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In this paper we introduce and study the cohomology of a small category with 

coefficients in a natural system. This generalizes the known concepts of Watts [23] 

(resp. of Mitchell [17]) which use modules (resp. bimodules) as coefficients. We 

were led to consider natural systems since they arise in numerous examples of linear 

extensions of categories; in Section 3 four examples are discussed explicitly which 

indicate deep connection with algebraic and topological problems: 

(1) The category of Z//p2-modules, p prime. 

(2) The homotopy category of Moore spaces in degree n, n22. 

(3) The category of group rings of cyclic groups. 

(4) The homotopy category of Eilenberg-MacLane fibrations. 

We prove the following results on the cohomology with coefficients in a natural 

system: 

(5) An equivalence of small categories induces an isomorphism in cohomology. 

(6) Linear extensions of categories are classified by the second cohomology group 

HZ. 

(7) The group H’ can be described in terms of derivations. 

(8) Free categories have cohomological dimension 5 1, and category of fractions 

preserve dimension one. 

(9) A double cochain complex associated to a cover yields a method of computa- 

tion for the cohomology; two examples are given. 

The results (7) and (8) correspond to known properties of the Hochschild-Mitchell 

cohomology, see [7] and [ 171. 
In the final section we discuss the various notions of cohomology of small 

categories, and we show that all these can be described in terms of Ext functors 

studied in the classical paper [l l] of Grothendieck. 

Notation 

We use the following notations: A boldface letter like C denotes a category, 
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Oh(C) and Mar(C) are the classes of objects and morphisms respectively. We iden- 

tify an object A with its identity 1, = 1. The set of morphisms A +B is C(A, B), 

and the group of automorphisms of A is Aut,(A). 

1. Cohomology of a small category 

An early approach to the cohomology of small categories is due to Jan Erik Roos 

[22] in his classical result on the derived li@ @) of the lim functor. As pointed out 

by Quillen [21] the singular cohomology of the classifyizg space of a small category 

is an example of lim(“). On the the other hand, Mitchell [17] introduces a 

cohomology by imita:ng as closely as possible the classical ring theory on the level 

of categories. This Hochschild-Mitchell cohomology uses bimodules as coefficients, 

while [21] and [23] use modules. The approach here generalizes these two concepts 

by taking ‘natural systems’ as coefficients which are more adapted to categories. 

Indeed, a module (resp. a bimodule) associates an abelian group to an object (resp. 

to a pair of objects), while a natural system associates an abelian group to each 

morphism. 

Let C be a category. The category of factorizations in C, denoted by FC, is given 

as follows: Objects are the morphisms f, g, . . . in C and morphism f +g are pairs 

((Y, p) for which 

a 
B-B’ 

commutes in C. Composition is defined by (a’,/?‘)(a,P) = ((Y’cx,/~~‘). We clearly 

have (a, p) = (a, l)( 1, /?) = (1, p)(a: 1) where 1 denotes the identity. This is the ‘twisted 

arrow category’ in [27]. 

A natural system (of abelian groups) on C is a functor, 

(1.2) D :FC-+Ah, 

from the category of factorizations to the category of abelian groups. The functor 

D carries the object f to Df = D(f) and carries the morphism (a, p) : f +g above to 

the induced homomorphism 

(1.3) D(a, j?) = a&* : Of+ Dafb = Dg 

where D(cx, 1)-a* and D(l,&=p*. 

(1.4) Definition. Let C be a small category. We define the cohomology H”(C, D) 
of C with coefficients in the natural system D by the cohomology of the following 



Cohomology of small categories 189 

cochain complex {F”, S}. The n-th cochain group F” = F”(C, D) is the abelian 

group of all functions 

(4 f: N,(C)-+ u Dg with f(I, ,..., L,>EDA,~...“J.,. 
g E MIX(C) 

Here N,(C) is the set of sequences (AI, . . . , A,) of n composable morphisms 

1, *II 
/lo+-/I,+**.-tA, 

in C (which are the n-simplices of the nerve of C). For n = 0 let N,(C) = Oh(C) be 

the set of objects in C and let F”(C, D) be the set of all functions 

(a)’ f:Ob(C)+ u DA 
A tOb(C) 

with f(A) E DA = D( lA). Addition in F” is given by adding pointwise in the abelian 

groups OS. The coboundary 

(b) &:F”~’ +F” 

is defined by the formula (n > 1): 

(c) (af)(a,,..., &)=L1*f(&, . . ..&I) 

n-1 
+,c, (-l)‘f(A ,,..., ,I;/I;+l ,..., A,,+(-l)“I,*F(A ,,..., A,_,). 

For n = 1 the coboundary 6 in (b) is given by 

(c)‘ (8f)(L)=2&4-2*J(B) for (A : A +B)eN,(C). 

One can check by (1.3) that Sf E F” for f E F”-’ and that 66 = 0. 

We now describe the natural properties of the cohomology. To this end we in- 

troduce the category Nat of all natural systems. Objects are pairs (C, D) where D 

is a natural system of the small category C. Morphisms are pairs 

(1.5) (@Pp, r.) : (C, D) + (C’, 0’) 

where @ : C’-+ C is a functor and where r : q3 *D --) D’ is a natural transformation of 

functors. Here @*D : FC’+Ab is given by 

(1.6) (@ *D)f = D@f for f E Mor(C’) 

and (x*=@(a)*, p*=@(p)*. A natural transformation t: 0-D yields as well the 

natural transformation 

(1.7) @*t : @*D+@*6. 

Now morphisms in Nat are composed by the formula 

(1.8) (v/OP, a)GPP, 4 = ((@u/Y? fJ o w*z>. 
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The cohomology introduced above is a functor, 

(1.9) H”: Nat+Ab @EJ% 

which carries the morphism (GOP, r) of (1.5) to the induced homomorphism 

(1.10) @*T* : H”(C, D) -+ H”(C’, D’) 

given on cochains fEF” by (~*s*f)(A;,...,~I,)=rfOf(~~;,...,~~~). We have 

(@op,r)=(@op, l)(l,t)=(l,$*r)(r#~~~, 1) and we write @*=(Qop, l), and (l,s)*=r*. 

(1.11) Theorem. Suppose @ : C’-+C is an equivalence of small categories. Then 0 
induces an isomorphism 

I$*: H”(C,D)zH”(C’,@*D) 

for all natural systems D on C, n E Z. 

For the proof of this result we consider first a natural equivalence 

t:o=:, qhly:C’+C 

which induces an isomorphism of natural systems 

(1.12) ~:I~*DG~*D with t=t,(tP1)*:DQjzD,, 

Here we have t,vf = t(#f)t-I since t is a natural equivalence. 

(1.13) Lemma. f&*= t+v* on H”(C, D). 

(1.14) Proof of Theorem (1.11). Let 4’: C+C’ be a functor and let 

t:@‘@zl, s:@@‘=l 

be equivalences. Then by (1.13) we have 

f*(@‘#)*= l*= 1 and f*(@$‘)*= I*= 1. 

Here r* and ?* are isomorphisms and therefore @* is an isomorphism. 0 

(1.15) Proof of Lemma (1.13). We construct a chain homotopy h for the diagram 

of cochain maps 

Y 
F*(C: @*D) 

(1) F*(C, D) 1, 

\ v/* I 

F*(C: w*D), 

(2) &qj*-w*=6h+h8 with h:F”“(C,D)+F”(C’,W*D). 
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Here h is given by the following formula 

191 

(3) (hf )(A;, . . . , A:,)=(~*)-' i (-l)'f(W~*,...,W~i,t,~~i+l,...,~~n) 

i=O 

The terms in the alternating sum correspond to paths in the commutative diagram 

*- 
WA, 

A somewhat tedious 

satisfied for h. I? 

@A2 @n 
*- . . . *-* 

It . ..1) 1) 
*-... *-* 

WA2 (u47 

but straightforward calculation shows that formula (2) is 

There are various special cases of natural systems which we obtain by the 

functors: 

n P 4 0 
(1.16) FC-CYxC-C-7rC-*. 

Here ;rc and p are the obvious forgetful functors and q is the localization functor 

for the fundamental groupaid: 

(1.17) zcC = (Mor C)-‘C, see [lo]. 

Moreover * in (1.16) is the trivial category consisting of one object and one mor- 

phism and 0 is the trivial functor. Using the functors in (1.16) we get special natural 

systems on C by pulling back functors in Fun& Ab) where K is one of the categories 

in (1.16). Such functors are denoted as follows: 

(1.18) Definition. M is a C-bimodule if ME Fun(CoP x C, Ab). 

F is a C-module if FgFun(C,Ab). 

L is a local system on C if L E Fun(nC, Ab). 
A is a trivial system on C if A is an abelian group or equivalently if 

A E Fun(*, Ab). 
Clearly we define the cohomology of C with coefficients in M, F, L and A respec- 

tively by the groups 

(1) H”(C, M) =H”(C, rr*M), 

(2) H”(C, F) = H”(C, n*p*F), 

(3) H”(C, L) = H”(C, rr*p*q*L), 

(4) H”(C, A) = H”(C, n*p*q*O*A). 

(1.19) Remark. As we will show in Section 8, the cohomology (1) can be identified 
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with the cohomology introduced by Hochschild and Mitchell, see [17] and [7]. 

Moreover the cohomology (2) is the one used by Roos [22], Quillen [21] and 

Grothendieck (see [15] for the definition of topos cohomology). Next the 

cohomologies (3) and (4) are the usual singular cohomologies of the classifying 

space BC with local coefficients and with coefficients in an abelian group respec- 

tively. 

(1.20) Remark. The cohomology H”(C, 0) with coefficients in a natural system as 

well generalizes canonically the cohomology of a group G with coefficients in a right 
G-module A: We denote the action of (E G on aEA by a<. Consider the category 
G with a single object and with Mar(G) = G. Then one has a natural system DA on 

G by 
(DA&=A for feG and (x*=1, j?*(a>=aP for aeA, a,j3~G. 

Now one can check by the usual definition of H”(G, A) that (1.4) yields the 

equation 

H”(G, A) =H”(G, DA). 

Compare for example [6], [14], [16]. 

2, Linear extensions of categories and H* 

An extension of a group G by a G-module A is a short exact sequence of groups 

(2.1) OdAAEaG+O 

where i is compatible with the action of G, namely i(ar) =x-‘(ia)x for XEP-‘(5). 
Two such extensions E and E’ are equivalent if there is an isomorphism E : Eg E’ 

of groups with p’e =p and &i = i’. It is wellknown that the equivalence classes of ex- 

tensions are classified by the cohomology H2(G, A) in (1.20). 

We now consider linear extensions of a small category C by a natural system D 

and we show that the equivalence classes of such extensions are equally classified 

by the cohomology H*(C, D) defined in Section 1. 

(2.2) Definition. We say that 

D+ -+E+Y 

is a linear extension if (a), (b) and (c) hold: 

(a) E and C have the same objects and p is a full functor which is the identity 

on objects. 

(b) For each morphism f : A + B in C the abelian group Df acts transitively and 

effectively on the subset p-‘(f) of morphisms in E. We write fO+a for the action 

of aeDf on foEp-‘(f). 
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(c) The action satisfies the linear distributivity law: 

(fo + @(g, + P) =&go +“f*P + g*a. 

Two linear extensions E and E’ are equivalent if there is an isomorphism E : ES E’ 

of categories with p’~ =p and with &(fO + a) = c(fO) + Q for f. E Mar(E), (Y eDpfi,. 

The extension E is a split extension if there is a functor s: C+E with ps = 1. 

(2.3) Theorem (Classification). Let D be a natural system on a small category C and 
let A4(C, D) be the set of equivalence classes of linear extensions of C by D. Then 
there is a canonical bijection 

I,// : M(C, D) 3 H2(C, D) 

which maps the split extension to the zero element in the cohomology group 

H 2(C, D). 

(2.4) Example. Let G be a group and let A be a right G-module. For the natural 

system D” on G in (1.20) the set M(G, DA) can be identified easily with the set 

E(G,A) of all equivalence classes of extensions in (2.1). Therefore (2.3) and (1.20) 

yield the result: 

E(G, A) =M(G, D”) = H2(G, DA) = H2(G, A). 

This, in fact, is the wellknown classification of group extensions, see for example 

11411 [161. 

Proof of Theorem (2.3). Let p : E+C be a linear extension by D. Since p is surjec- 

tive on morphisms there extists a function 

(1) s : Mar(C) -+ Mar(E) 

with ps = 1. If we have two such functions s and s’ the condition ps = 1 =ps’ implies 

that there is a unique element 

(2) dEF’(C, D) with s’(f)=s(f)+d(f), feMor(C). 

Moreover, each dEF’(C, D) gives us by (st d)(f) =s(f) + d(f) a function 

s + d: Mar(C) -+ Mar(E) with p(s + d) =ps = 1. 

For a (y, x) ENS the formula 

(3) S(Y-9 =s(y)s(x) +d,(y, x) 

determines the element 

(4) A,E F’(C, D). 

This element measures the deviation of s from being a functor. If s is a splitting, 

then d,=O. We now define the function Y in (2.3) by 

(5) p{E) = {A,). 
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Here {E} EM(C, D) is the equivalence class of the extension E and 

{A,} E H2(C, D) is the cohomology class represented by the cocycle A, in (4) where 

s is chosen as in (1). First we have to check the cocycle condition for A,: We 

compute 

s((zu)x) =s(z)s(Y)s(x) +x*d,(z,Y) +d,(zY,x), 

4z(YX)) = ~(Z)S(Y)S(X) + Z*A,(Y, 4 + d,(z, YX). 

Therefore associativity of composition implies 

0=z*d,(Y,x)-~,(zY,x)+~,(z,Y.+x*~,(z,Y) 
(6) 

= @d,)(z, YV 4, see (1.4)(c). 

Moreover the cohomology class {A,} does not depend on the choice of S: We 

compute 

(s+d)(Yx)=s(Y)s(x)+x*d(Y)+Y*&@+~,+,(Y,x). 

Therefore we have by (3) 

n,(nx)-n,+,(Y,x)=Y*d(x)-d(yx)+x*d(y) 
(7) 

= @d)(Y, x), see (1.4)(c). 

In addition, we see that for an equivalence E we have 

(8) &=A,. 

By (6), (7) and (8) the function I+U in (5) is well defined. The function Y is surjective 

by the following construction: Let A E F2(C, II), &l = 0. We get an extension 

(9) pn:E,+C with Y{E,)={d}. 

The morphisms in E, are the pairs (f, (x) with f e Mar(C), a E DP The composition 

in E, is defined by 

(10) ($5 P)(f, a) = (gf, d (&f) + !?*a +f *m. 

The action of D on Ed is defined by (f, a) + cr’= (A a + a’), (X’E Of. 
Since we have an equivalence 

(11) EAT&E with e(f,a)=s(f)+cr 

we see that Y is also injective. 0 

(2.5) Remark. For a linear extension 

(1) D-t -E-C 

the corresponding cohomology class Y{E} eH2(C, D) has the following universal 
property with respect to the groups of automorphisms in E: For an object A in E 

the extension (1) yields the group extension 
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(2) O+A+Aut&l)+Aut&l)+O 

by restriction. Here o E Aut,-(A) acts on XEA = D(1,) by xa = (a-’ ),a*(~). The 

cohomology class corresponding to the extension (2) is given by the image of the 

class Y”(E) under the homomorphism 

(3) HZ&, D) l*i* __* H2(Autc(A), A). 

Here i is the inclusion functor Autc(A)c+C and t : i*D+DA is the isomorphism of 

natural systems, see (1.20), with 

(4) t=(a~‘)*:D;,-+D(l,)=A. 

3. Algebraic and topological examples of linear extensions 

(3.1) The category of Z/p2-modules (p prime) 

Let R be a commutative ring and let M, be the (small) category of finitely 

generated free R-modules: Objects are 

(1) R”=R@...@R, n summands, n> 1. 

and morphisms R” -+ R” are m x n-matrices (ad) over R, and composition is multi- 

plication of matrices. We have the canonical MR-bimodule 

(2) Hom:M;;PxM R+Ab 

which carries (R”, Rm) to the abelian group Hom(R”,Rm)=Mm~“(R) of m XTZ- 

matrices. 

For any prime p there is the canonical linear extension of categories 

(3) Horn + + M 
4 

‘f/P z -Mz,P. 

Here q is reduction modp and the matrix /3= (b,) modp acts on the matrix a= 

(crij) modp’ by the formula 

(4) cx+P=(aij+p$,). 

It is an easy exercise to show that (3) is a welldefined linear extension of 

categories. By a result of Werner Meyer (Max-Planck-Institut fur Mathematik in 

Bonn) the extension (3) is not split. Therefore by (2.3) it represents a nontrivial 

cohomology class, a generator in fact, of 

(5) H2(Mn,P, Horn) = Z/p. 

If restricted to the group of automorphisms the extension in (3) yields elements in 

(6) H’(GL,(Z/p), kP”(Z/p)) 

which are nontrivial for (n - l)(p - 1) 2 2. These elements actually turned out to be 
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of importance in computations on the cohomology of the general linear groups 

GL,(U& [91. 

(3.2) The homotopy category of Moore spaces in degree n, nr2 

Let Ab, be the small category of finitely generated abelian groups. For each 

A E Abe we choose a Moore space M(A, n). This is a simply connected CW- 

complex with a single nontrivial homology group in degree n isomorphic to A. Let 

Moore” be the full homotopy category of such Moore spaces. Then there is a 

canonical linear extension of categories 

(1) 
Hfl 

En+ -+Moore”---+AbO. 

Here H, is the n-th homology functor and E” is the following bifunctor on Ab,,: 

(2) E”(A,B)=Ext&4,r,‘B) 

with rd B = B 0 Z/2 for n 13 and with ri B = TB. Here r is the universal quadratic 

functor of J.H.C.. Whitehead [24]. The extension (1) is an easy consequence of the 

universal coefficient theorem for homotopy groups with coefficients, see for 

example [ 131. In fact, the extension is not split for all n L 2. For n 2 3 the extension 

for the category of U6modules in (3.1) is actually a subextension of (1). Again, 

by (2.3) the extension (1) represents a nontrivial element of the abelian group 

(3) H2(Abo,E”) which is Z/2 for nz 3. 

The first named author computed a representing cocycle for the extension in (l), 

nz2. The cohomology groups (3.1) (5) and (3) (ns 3) are computed in [26]. 

(3.3) The category of cyclic groups and the homotopy category of pseudoprojective 
planes 

We define the category R of group rings of cyclic groups. Objects are the natural 

numbers in N. For f,g E N the set of morphisms f +g is the set 

(1) R(f, g) = {A E Z[Z/g] : f divides g. &(A)} 

where E is the augmentation of the group ring Z[Z/g]. for ,I E R(f, g) we define the 

homomorphism 

(2) 0, : Z/f -‘z/g, O,(l)=g.~(A)/f modg. 

Now the composition &u : h-+f +g in R is 

(3) hp = A * 8,*(P) E Z[Z/gl. 

Here multiplication is taken in the group ring. It is easy to check that R is a well- 

defined category. 

We define two natural relations = and = on R as follows: 
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Here a/ is the sum of all generators in Z[Z/f]. 

We have the canonical linear extension of categories 

(6) B++R/-+ ’ R/= 

Here I? is the natural system defined for {A) in R/= by the group cohomology 

(7) &, = H2(Z/L O,*I,), A :f +g, 

where Zg denotes the augmentation ideal of Z[Z/g]. If 1 is the order of kernel(t9,), 

then the group in (7) is isomorphic to 

(8) 
0 

E’(A) z 
i 

if e, is injective or surjective, 

(Z/f)(g”‘f)-’ otherwise. 

This shows that the natural system E is not a bimodule. It is an open problem 

whether the extension (6) is split or not and what the universal graded group 

H*(R/=,& could be. 

The extension in (6) has a nice topological interpretation: for each f E N let 

(9) Pf=S’Ufe2 

be the pseudoprojective plane with rr, (Pf) = H/f. There is a canonical isomorphism 

of categories 

(10) r:R/= =P 

where P is the full homotopy category of base point preserving maps between 

pseudoprojective planes. Moreover the equivalence relation = in (5) satisfies 

the 
(11) A=,Ll * 

1 

maps r{A},r{,uU) : Pf-+P, induce the same homomor- 

phism on the homotopy groups rc, and 7r2. 

The groups of automorphisms in the extension (6) were considered by Olum [19] 

who also showed that the structure of these groups is surprisingly rich and that this 

structure is related to rather deep results and problems in algebraic number theory. 

The authors expect that the same is true for the extension in (6) and for the universal 

cohomology groups H*(R/-,z). The results (6) and (10) are proved in [l]. 

(3.4) The homotopty category of Eilenberg-Madane fibrations 

Let TZ be a group and let M, be the small category of finitely generated right II- 

modules. We define for each nr2 the category of k-invariants kit1 : Objects are 

pairs (A, k) where A is an object in M, and k is an element 
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(1) kEH”+$c,A), 

morphisms f : (A', k') + (A, k) are n-linear maps f: A'+A which satisfy f*(k’) = k. 
We choose for each object (A, k) a fibration Ek over the Eilenberg-MacLane space 
K(n, 1): 

(2) K(A, n)6E,- K(n, 1) 

with fibre K(A, n) which is determined up to equivalence by the k-invariant k, com- 
pare [3]. Now we have the linear extension of categories 

(3) 

where the category K: is the full homotopy category of maps over K(n, 1) con- 
sisting of the fibrations Ek in (2). The functor rc,, is given by the n-th homotopy 
group. Moreover, the natural system H” is the module 

(4) H”: k:+‘CM,=Ab 

which carries the object (A, k) to the cohomology H”(n, A) of the group z. It is not 
known to us whether the extension (3) splits, but probably it does not. On the full 
subcategory of objects (A, k) with k = 0, however, the extension splits. It is an in- 
teresting fact that the cohomology groups 

(5) H*(k; + ‘, H”), nr2, 

are new invariants of the group rc. This example is discussed in [2]. 

4. Homological algebra in functor categories 

We first recall from the literature some facts on functor categories. For a small 
category C let Fun(C,Ab) be the category of functors from C to the category of 
abelian groups Ab. Morphisms are the natural transformations. 

(4.1) Remark. Fun(C, Ab) is an abelian category with enough projectives and by a 
theorem of Grothendieck [ll] also with enough injectives. Compare [8]. 

We denote by Horn,(F,G) the abelian group of all natural transformations 
F + G in Fun(C, Ab). By (4.1) each F has a projective resolution 

P,: *.a -+P,-rP,_, ,...+P,+F_,O. 

On the other hand by (4.1) also each G has an injective resolution 

I*: . ..+~“+~“-‘+...+Z”cG+()+ 

Now the functors ExtE(. , .) d erived from the bifunctor Homo(. , -) are given by 
the cohomology 
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(4.2) Ext@, G) = H” Horn&P,, G) = H” Horn&Z*). 

It is a wellknown fact of homological algebra that the cohomologies in (4.2) defined 

in terms of P, and Z* are naturally isomorphic, see for example [ 181. 

The cohomology H”(C,D) of a small category C with coefficients in a natural 

system D can be described by an Ext” functor on the category Fun(FC,Ab) where 

FC is the category of factorizations, see Section 1. Here we use the canonical 

functor 

(4.3) Z:K+Ab 

which carries an object x of the category K to the free abelian group with one 

generator x, denoted by Z(x), and which carries a morphism m : x+y to the isomor- 

phism m* : Z(x) = Z{ y> with m*(x)=y. Clearly Z is isomorphic to the constant 

functor on K with value L 

(4.4) Theorem. For Z : FC-+ Ab there is an isornorphism 

H”(C, D) = Ext&-(Z, D) 

which is natural in D. 

We proof this result by constructing the generalized bar resolution B, of 77 in 

Fun(FC, Ab). 

Proof of (4.4). For a morphism fin C let 

~n(f)=((~,,..., A,)EN,(C):f=A, 0 . . . oh.}, 

(1) 
No(f)= I 0, .f#l, 

{I}, f= 1. 

We define a chain complex B*= {B,, d} of Z in Fun(FC,Ab) by the functors 

B,: FC+Ab, 

B,(f)=~,+Lf), B,=O for n<-1, 
(2) 

&(~,~):B,(f)-‘4(g), 

(2 o,...,~,+,)~(alo,l,,...,~,,~,+,P). 

Here hA4 is the free abelian group generated by the set M. The boundary 

d : B,, -+ B, _ 1 is the natural transformation 

df: B,,(f)+B,--,(fh 
(3) 

d’(lo,...,&+, )=kiO(-l)k(lo I..., w%+l,..., &+I). 
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For each f there is a contracting chain homotopy sf with dfsf + sfdf= 1 on B,(f) 
defined by 

(4) 
sf: 4,(f)-‘&+,(fh 

+(A09 *.. 9 IZ,+1)=(1,~0,...,A,+1). 

The homology of B* in Fun(FC,Ab) is given objectwise, that is 

(5) H,(B,)( f) = ker ds/im df. 

Therefore the homotopy (4) implies H,(B,) = 0 and thus B, is exact. We point out 

that sf in (4) yields no natural transformation B, + B,, 1 but by (5) this is not 

needed. 

Next consider the definition of F” in (1.4). There is the natural isomorphism of 

abelian groups 

(6) Horn&B,, D)= F”(C, D), n 20, 

whichcarriesF:B,~Dtothefunctionf~F”withf(~,,...,~,)=F(l,~,,...,~,,l). 

Indeed by (6) we have the isomorphism of cochain complexes 

(7) Hom,c(P*,D)~:(F”(C,D),6} 

where P* is the part of B, in nonnegative degrees nr0. We have 

(8) B_,=Z:FC+Ab 

by definition in (2) and in (4.3). Since B, is exact we see by (8) that P* is a resolution 

of Z in Fun(FC, Ab). Moreover P* is projective since by (6) each B, (n 2 0) is a free 

natural system. In fact B, is freely generated by the system of sets 

{N,(f) : f EMor(C Now the isomorphism in (4.4) is induced by the isomor- 

phisms in (6), see (1.4) and (4.2). 0 

5. Derivations and If’ 

A derivation from a group G into a right G-module A is a function d : G -+A with 

the property 

(5.1) d(xy) = (dx)y + dy. 

An inner derivation i : G +A is one for which there exists an element SEA with 

i(x) = a - 0’. It is a classical result that 

(5.2) H’(G, A) = Der(G, A)/Ider(G, A) 

where Der and Ider denote the abelian groups of derivations and of inner deriva- 

tions respectively. Compare for example 1141. 

We now consider derivations from a small category C into a natural system D on 

C and show that the cohomology H’(C, D) can be described similarly as in (5.2). 
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In the following definition we use the groups F”(C,D) defined in (1.4). 

(5.3) Definition. A derivation d : C+D is a function in F’(C, D) with 

d(w) = x*(dA + y *@x). 

An inner derivation i : C-D is one for which there exists an element aE 
F’(C, D) such that for x : A -+B 

d(x) = x,a(A) - x*a(B). 

(5.4) Example. Let G and DA be defined as in (1.20). Then a derivation G-DA is 

exactly given by a derivation G +A. The same holds for inner derivations. 

We denote by Der(C, D) and Ider(C, D) the abelian groups of all derivations and 

of all inner derivations C-+D respectively. These are actually functors 

(5.5) Der, Ider : Nat -+ Ab 

which are defined on morphisms (oop, r) exactly as in (1.10). 

(5.6) Remark. There is a natural isomorphism 

H’(C, D) = Der(C, D)/Ider(C, D) 

of functors on Nat. 

This is clear since derivations are just cocycles and inner derivations are just co- 

boundaries in the cochain complex {F*(C, D),S}, see (1.4). For later use we con- 

sider the augmentation ideal J(C) E Fun(FC, Ab). This is the natural system deter- 

mined by the exact sequence 

d 
(5.7) O+J(C)+B,(C)-Z+O 

where B,(C) and d are the same as in the proof of (4.4). We point out that the 

kernel J(C) of d is given objectwise, that is J(C)(f) = kernel df 

(5.8) Lemma. There is a natural isomorphism 

j* : Horn&J(C), D) zDer(C, D) 

of functors on Nat. 

Proof. We have a derivation 

(1) j : C-J(C), Af) = (l,f) - (J; 1) 

and we set j*(t) = t 0-i. We define the inverse k of j* by the formula 
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for X= C ni(ai, pi) E J(C)(f) and d E Der(C, D). q 

6. Cohomological dimension one 

The cohomological dimension of a small category C and of a group G are funda- 

mental notions in the literature which have been discussed by many authors. We in- 

troduce five possibly different dimensions of C depending on the type of coeffi- 

cients, see (1.18). 

(6.1) Definition. Let dim(C)< 03 be defined by the condition that dim(C)5 N if 

N”(C, D) = 0 for n > N and for all natural systems D. We define the dimensions 

dbim(C), dmod(C), dloc(C) and dtriv(C) 

in the same way where, however, D ranges over all C-bimodules, C-modules, local 

systems on C and trivial systems on C respectively, see (1.18). 

Clearly by the definition of the cohomology groups in (1.18) we have the 

inequalities 

(6.2) dtriv(C) I dloc(C) I dmod(C) I dbim(C) (: dim(C). 

(6.3) Theorem. (A) If F is a free category, then dim(F) 5 1. 

(B) If C is a small category and if Z;-‘C is the localization of C with respect to 
a subset 2 of Mar(C), then 

dim(C) 5 1 * dim(Z-‘C) s 1. 

(6.4) Remark. The theorem generalizes the following wellknown facts of homo- 

logical algebra (see for example [6], [14] and [16]): 

(A) If F is a free monoid, then the associated small category F with a single object 

and with Mar(F) = F is a free category and thus 

cd(F) = dmod(F) 5 dim(F) 5 1 

by (6.3)(A) and (6.2). Here cd(F) is the usual cohomological dimension with respect 

to coefficients in left F-modules. 

(B) If G is the free group generated by a set S, then we have 

G=S-‘F 

where F=Mon(S) is the free monoid generated by S. Now (6.3)(B) shows 

cd(G) = dmod(G) 5 dim(S-‘F) 5 1. 
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Here again cd(G) is the usual cohomological dimension of G. 

(6.5) Remark. Moreover Theorem (6.3) corresponds to the following results of 

Cheng-Wu-Mitchell [7]: 

(A) dbim(F)I 1 for a free category F. 

(B) dbim(C) 5 1 * dbim(Z-‘C) 5 1. 

This as well generalizes the classical results in (6.4). 

(6.6) Remark. It is clear that for a free category F each linear extension of F is a 

split extension. Therefore the classification in (2.3) shows that for all natural 

systems D on F we have 

H’(F,D)=O. 

By (6.3)(A) we actually know that for all n~2 also N”(F, D) =O. 

For the proof of Theorem (6.3) we use the following lemmas. 

(6.7) Lemma. dim(C) 5 1 e J(C) projective. 

Here J(C) is the augmentation ideal in (5.7). 

(6.8) Lemma. The localization q: C-+2’-‘C induces the isomorphism 

q*: Der(Z~‘C,D)=Der(C,q*D) 

which is natural in DE Fun(F(.E’C), Ab), compare (5.5). 

(6.9) Proof of Theorem (6.3). Proposition (A) is equivalent to the following 

statements (l), (2), (3) which are all equivalent to each other: 

(1) J(F) is projective, see (6.7). 

(2) Horn&J(F), .) is an exact functor. 

(3) Der(F, .) is an exact functor, see (5.8). 

Here (3) follows from the presentation 

(4) Der(F, D) = n Ds 
,fE s 

where F is freely generated by S c Mar(F). 

Similarly proposition (B) is a consequence of (6.8) and (6.7) since (l), (2) and (3) 

are as well equivalent for F replaced by Z’C and C respectively. 0 

(6.10) Proof of (6.7). ‘a’ is obvious. 

Now assume dim(C)< 1. For the exact sequence (5.9) we have the short exact 

sequence 
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(1) 
d 

O+K-tB,-J+O 

which induces the exact sequence 

Baues, G. Wirsching 

(2) H1(C,B@+H1(C, J)h2(C,K)=0 

where 6 is the Bockstein homomorphism. Here H2(C, K) = 0 since dim(C) I 1. Now 

d, is embedded in the commutative diagram with short exact rows, see (5.6): 

O- Ider(C, B,) - Der(C, BI) -H,(C,B,)-0 

(3) 

0 - Ider(C, J) ----+ Der(C, J) - H’(C, J) -0 

Here d, and d2 are as well induced by d in (1). Since d, is surjective by (2) and since 

d, is seen to be surjective by use of the definition of inner derivations in (5.3) also 

d2 is surjective. Now by (5.8) the homomorphism d2 is isomorphic to 

(4) d* : Horn&J, B,)+HomFc(J, J). 

Therefore there is s : J+ B, in Fun(FC, Ab) with ds = 1. Since B, is free J is pro- 

jective. 0 

(6.11) Proof of (6.8). We construct the inverse k of q* in (6.8) as follows: Choose 

a free category F(S) generated freely by S such that C is a quotient 

(1) p:F(S)+C=F(S)/-. 

This yields the quotient functor 

(2) p’:F(SIjZoP)+C-‘C=F(SIj2’P)/-‘. 

Here -’ is the natural equivalence relation generated by - on F(S) and by 

(3) 6. (TOP-‘1, (TOP.(T-’ 1 for 0EZ 

where BEF(S) represents o. 

For a derivation d : C + q*D we define the derivation 

E(d) : F(SIjZoP)+D 

(4) with E(d)(s)=d(ps)ED,cPs, for SES, 

&D)(oop) = -(qa)G’ ((go)*)-‘da for a E Z:. 

The second equation corresponds to the fact that for a derivation d and for 

1 = ee-’ we have 

(5) O=d(l) =d(ee-‘) =e,d(e-‘)+ (e-‘)*d(e). 

This shows as well that ii(d) factors over p’ in (2). The factorization k(d) with 
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E(d) = k(d)p’ yields the homomorphism k : d-k(d) which is the inverse of q *. 0 

7. Computations of the cohomology by covers 

We use a method which is analogous to the computation of the Tech cohomology 

of a space by covers, see for example [4]. 

A double cochain complex K= (K p,q,d,6), p, qEZ, consists of abelian groups 

Kp’q and homomorphisms 

(7.1) 

such that 66 = 0, dd = 0, and 6d = da. 
K is called (A4, N)-acyclic if 

(7.2) 
H”(K*,q, d)=O for n>M, qrN, 

H”(Ka*,6)=0 for n>N, p>M. 

The following proposition is a standard fact proved by the spectral sequence 

which computes the cohomology of the total complex. 

(7.3) Proposition. Suppose K is (M, N)-acyclic. Then 

HN+n(S$ = H”+n( W,*), n E Z, 

where Si and Wz are the cochain complexes defined by 

Si = (kernel(dN’ *), 6) for *rM and Si = 0 otherwise, 

W,* = (kernel(b*,“), d) for $2 N and W,* = 0 otherwise. 

For a small category C and for a sequence UU,o!e IN, of subcategories of C we 

introduce a double complex K as follows: Let UaO...aP = U,,fl... fl Ua, be the in- 

tersection category and let 

(7.4) Kp5q= x Fq(U~O...cc,, D), 
U(J<“‘<fz,, 

see (1.4). Here D is a natural system on C which yields by restriction a natural 

system on each subcategory of C. The coboundary 6p’q is given by the direct pro- 

duct of the corresponding coboundary 6 in (1.4). The coboundary d carries a se- 

quence cc) =(w,,... n, : a0 < ... cap) to the sequence do=((do),....p+, :ao<...<ap+l) 
where 

(7.5) 
P+l 

(da),,...uP+, = ,FO (-l)iO,,,...a,~la,*I”.a,+,. 

The terms in the sum are restricted to the subcategory Uan...a,+, and the sum is 
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taken in the group F”(IY,,...~,+,, D). Now the crucial lemma is: 

(7.6) Lemma. K in (7.4) is a (0, m)-acyclic double complex. Moreover, if 
dim( U a,-a,)ll, see (6. l), then K is (0, I)-acyclic. 

For the proof see [25]. 

The lemma implies by (7.3): 

(7.7) Proposition. Suppose the sequence (U,) has the following properties (a) and 

(b): 

(a) 

(b) 

dim(U,,...,D)r 1 for all (~~<+--<a~, 

Nb(c)= u Nb(ua), see (1.4). 
ash 

Then H’+“(C,D)=H’+” (S,$) = H”( W,*) for all n with 1 < 1 + n < 6. 

This proposition can be used for effective computation of the cohomology 

H’+“(C, 0). Condition (a), in particular, is satisfied if all intersections UaO...@, are 

free categories, see Theorem (6.3). 

We describe a simple example for the computation of HZ, where we as well use 

the result (5.6). Consider the commutative square 

(7.8) Q= 

c c J 
For this category we have the free subcategories U, = {a, p}, U2 = (~6) and 

U12 = {E}. The sequence (U,, U,) satisfies the conditions (a) nad (b) in Proposition 

(7.7) for any 6. Therefore H2(Q, D) = H’( Ws) where D is a natural system on Q. 

The first part of IV; is 

(7.9) W,o=D,xDpxD,xD,~ W;=D,- W;=O 

with d(o,, wB, oY, w6) = CI*O~ + p*w, - 6*w, - y*os. It follows that 

(7.10) H2(Q,D)=DE/(a*Dp+P*Da+&DY+y*Ds). 

We remark that by (2.3) each cohomology class in this group represents a category 
which is a linear extension of the commutative square. 

In a similar way as (7.10) one computes the cohomology of the category K given 

by the following finite commutative diagram 
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Xi 

9 
*-...-* 

*>* 
4 \ -***-*------h* 

(7.11) 

Li X: / x; 
*-...A* 

Here all places * correspond to pairwise different objects. By commutativity we 

have 

k k x=x1 oxlo...oxt for k=l,...,n. 

For any natural system D on K the second cohomology is 

(7.12) 

with 

H2(K, D) = j, @(x)/l,) 
k=2 

Ik= c (x;)*“. (x,‘- 1 >*<x:,,* ... (x!, , ,*mi’ 1 
r=l 

lx 

+ ,;, cd)* ... cx;- ,)*(x$,*- (xf+ ,)*0(x;). 

In particular, if n = 1 the term (7.12) is trivial, indeed, this is clear since K is a free 

category in this case, see (6.3). 

8. Further cohomologies of small categories 

In this section we consider again the various cohomologies defined in (1.18) and 

compare them with the corresponding notions in the literature. This is the program 

announced in Remark (1.19). Recall from Section 4 that homological algebra (with 

derived functors) is available in any functor category Fun(K,Ab). 

(8.1) Definition. Let C be a small category, and let A4 be a C-bimodule. 

We have the canonical C-bimodule 

(1) LC:CoPxC+Ab, 

which carries the object (A, B) to the free abelian group ZC(A, B) generated by the 

morphism set C(A, B). The Hochschild-Mitchell cohomology of C with coefficients 

in A4 is defined by 

(2) Ext&+ &C, M) 

as described in (4.2), see [17]. 

(8.2) Definition. Let C be a small category and F be a C-module. For the constant 

functor 
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(1) Z:C-+Ab, 

compare (4.3), we have by (4.2) as well the groups 

(2) Ext;(Z, F). 

This is a description of the cohomology of a small category used by Watts [23] 

and Quillen [21]. Moreover, it is particular case of the cohomology of topoi in the 

sense of Grothendieck [15]. 

(8.3) Remark. Consider the Grothendieck topos 

(1) C = Fun(C, Set) 

where Set is the category of sets. The abelian group objects in C are just the C- 

modules. Now the Grothendieck cohomology of C with coefficients in the abelian 

group object F is exactly the group (8.2)(2) since Z is the free abelian group object 

over the terminal object of C, compare [ 151. In Section 29 of [ 121 Grothendieck calls 

a functor $J : C-+C’ of small categories a weak equivalence if @ induces an iso- 

morphism 

(2) @*:H”(C:F)~H”(C,@*F) 

for all n and all C’-modules F and if @ satisfies in degrees n = 0, n = 1 certain addi- 

tional nonabelian criteria. It is as well justified to define notions of weak equi- 

valences by using in (2) bimodules or even natural systems as coefficients. We do 

not know whether these notions are actually stronger than the notion of Grothen- 

dieck. 

(8.4) Remark. We know by (4.2) that the group ExtE(Z, F) can be defined by a 

projective resolution B, of z or by an injective resolution Z* of F in the category 

of C-modules. When we take the injective resolution we obtain canonically the 

derived of the functor L = Ii@ by 

(1) Extz(Z, F) = H” Horn&, I*) = H”(L(Z*)) = l@(“)(F). 

since li@( .) = Horn& e). When we take the projective resolution B, of Z we 

obain 

(2) Extc(i& F) = H” Homo(B*, F). 

The cochain complex Horn&B*, F) is isomorphic to the cochain complex con- 

structed by Roos [22] and more generally by Bousfield-Kan [5]. Therefore the 

equation 

(3) H” Horn@*, F) = lim’“‘(F) 

corresponds to the classical result of Roos in the case of C-modules. This actually 

is a very special case of the result of Roos and Bousfield-Kan since they consider 
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Ii@(“)(F) for functors F: C+A where A is a suitable abelian category. Here a 

representation like l&n(e)= Horn&Z, .) is not available and therefore a simple 

argument as in (1) does not work. 

(8.5) Proposition. (A) For any C-bimodule M we have 

H”(C, M) = Ext;&Z, rc *M) = Ext&.,(ZC, M). 

(B) For any C-module F we have 

H”(C, F) = Ext;j-&, rc *p*F) = F) = l@(“)(F). 

Proof. (A) Consider the standard projective bar resolution of Mitchell in [17, p. 

70f]. If we compute the term on the right hand side of (A) we get our definition 

of H”(C,M), compare (1.4) and (1.18)(l). 

(B) Consider the projective resolution B* of L in (8.4). Now in the same way the 

right hand side of (B) canonically coincides with our definition of H”(C, F), com- 

pare (1.4) and (1.18)(2). 0 

(8.6) Remark. Quillen proves in [21, p. 911, that for a local system L on C one has 

the natural equation 

lim(“)(q*L) = H”(BC L) , . 

Here q : C + nC is the localization functor in (1.16) and BC is the classifying space 

of the category C (the realization of the simplicial set defined by the nerve of C, 

see also (1.4)). The fundamental groupoid of the space BC is canonically equivalent 

to the fundamental groupoid rcC. Therefore L determines a local system of coeffi- 

cients for the space BC which we as well denote by L. 

(8.7) Remark. By (8.5)(B) we know 

(I) H”(C, D) = H”(FC, 0) 

where the left hand side is a cohomology with coefficients in a natural system D. 

The right hand side is the cohomology with coefficients in the FC-module D which 

as we know by (1.18) is a special case of the cohomology of FC with coefficients 

in a natural system on FC. Therefore one might consider inductively the co- 

homology groups 

(2) H”(F’C,D), i2 1, 

with DE Fun(F’C, Ab) as being a generalized cohomology of C. Any reasonable 

cohomology of C, however, should have the property that the cohomology vanishes 

in degree 22 if C is free. This property is satisfied for the group (2) if i= 1, see 

(6.3)(A), yet the example below shows that this property does not hold if i> 1. 

(8.8) Example. Consider the free category C generated by the graph 
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(1) 
B 

AAB-C. 

Then FC is the category pictured in the commutative diagram 

Pa 

IA 18 k 

In particular, FC is not a free category though C is free. In addition, we show 

(3) dmod(FC) = dim(C) I 1 < 2 = dim(FC), 

compare the notation in (6.1). The first part is clear by (8.7)(l) and (6.3)(A). 

Moreover, the last equation follows by the computation of cohomology groups 

N”(FC, D), D a natural system on FC. Here we use the method of Section 7 which 

shows similarly as in (7.9) that 

(4) ff=(FC, D) =Q’(.@,, +$=DY,+zl+Q, +~ztD,,) 

and H”(FC, D) =0 for nr3 and any natural system D on FC. Now (4) is non- 

trivial if we set D, # 0 and Of= 0 for morphisms f in FC, f #E. 
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